Введение

 

 

Главная

Лекция 1. Введение в сопротивление материалов

 

Содержание

Задачи и методы сопротивления материалов

Реальный объект и расчетная схема

Связи и опорные устройства

Внешние и внутренние силы. Метод сечений

Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней

Допущения, применяемые в сопротивлении материалов

Напряжения

Перемещения и деформации

Закон Гука и принцип независимости действия сил

Общие принципы расчета конструкции

Вопросы для самопроверки

Тесты для самоконтроля

 

Задачи и методы сопротивления материалов

Сопротивление материалов - наука об инженерных методах расчета на прочность, жесткость и устойчивость элементов сооружений и деталей машин.

Элементы сооружений отличаются друг от друга формами, размерами, материалом, функциональным назначением, рядом специальных требований. При этом следует отметить, что все без исключения элементы как искусственного, так и естественного происхождения обладают такими свойствами, как прочность и жесткость, то есть способностью, не разрушаясь воспринимать различные нагрузки и сопротивляться изменению своих первоначальных форм и размеров, без чего не может нормально функционировать сооружение. Цель расчетов в сопротивлении материалов – создание прочных, устойчивых, обладающих достаточной жесткостью, долговечностью и вместе с тем экономичных элементов сооружений

Например, конструкции стропильной фермы, междуэтажных перекрытий зданий должны выдерживать нагрузки от атмосферных воздействий, оборудования и людей и обладать достаточной жесткостью, обеспечивающей ограничение прогибов для создания нормальных условий функционирования сооружения.

Рис. 1. Характер деформирования и разрушения стержня под нагрузкой:

а) – элемент до нагружения; б) – деформация стержня при изгибе; в) – вид излома элемента при изгибе; г) – изгиб стержня при сжатии

 

Прочностные и жесткостные качества элементов сооружений зависят от многих факторов: материала, размеров, характера возникающих деформаций и др. Металлические конструкции обладают большей прочностью и жесткостью, чем аналогичные деревянные конструкции. Стержень из одного и того же материала, имеющий большие поперечные размеры, более прочный и жесткий, при этом его легче разрушить, изгибая, чем растягивая. Тонкий стержень при его сжатии разрушается в результате выпучивания в поперечном направлении, в то же время это явление отсутствует при продольном растяжении и для разрушения стержня требуется значительно большая нагрузка.

Например, возьмем деревянный брусок (рис.1, а). Начнем сгибать стержень. Чем сильнее мы будем прикладывать усилия, тем больше он изогнется (рис.1 б), и при какой то величине усилий сломается (рис.1, в). Подведя итог можно утверждать, что всякое реальное тело под воздействием сил меняет свою форму и размеры, т. е. деформируется. Деформации обуславливают появление внутри элемента сил сопротивления. Если внешние силы больше сил сопротивления, происходит разрушение элемента сооружения.

При возрастании нагрузки выше определенных значений в теле наряду с упругими будут возникать деформации не исчезающие после снятия нагрузки. Такие деформации называются остаточными. Возникновение остаточных деформаций, наравне с разрушением связано с нарушением нормальной работы конструкции и, как правило, недопустимо.

Способность конструкции воспринимать заданную нагрузку, не разрушаясь и без остаточных деформаций, называют прочностью.

Все элементы сооружения, из каких бы материалов они ни были изготовлены, под нагрузкой деформируются. Однако значительные деформации могут мешать нормальной эксплуатации сооружения.

Способность сооружений и ее частей под нагрузкой сохранять свои размеры и форму в установленных нормами пределах называется жесткостью.

Рассмотрим еще один пример. Будем сжимать тонкий и длинный стержень (тот же деревянный брусок). Уже при незначительной силе стержень изогнется, как показано на рис.1, г. В этом случае первоначальная форма прямолинейная форма равновесия стержня становится неустойчивой.

Способность конструкции, и ее частей, сохранять под нагрузкой первоначальную форму упругого равновесия называется устойчивостью.

Обычно потеря устойчивости сопровождается мгновенным изменением формы элемента и разрушением конструкции.

Методами сопротивления материалов выполняются расчеты, на основании кото­рых определяются необходимые размеры деталей машин и конструкций инженерных сооружений. Любая конструкция должна обладать надежностью при эксплуатации и быть экономичной.

Надежность – свойство конструкции выполнять заданные функции, сохраняя свои эксплуатационные показатели в определенных нормативных пределах в течение требуемого промежутка времени.

Ресурс – допустимый срок службы изделия. Указывается в виде общего времени наработки или числа циклов нагружения конструкции.

Отказ – нарушение работоспособности конструкции.

Опираясь на вышесказанное, можно дать определение прочностной надежности.

Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.

Надежность конструкции обеспечивается, если она сохраняет прочность, жесткость и устойчивость при гарантированной долговечности. Ее экономичность в значительной мере определяется расходом материала, применением менее дефицитных конструкционных материалов, возможностью изготовления деталей по наиболее прогрессивным технологиям. Надежность и экономичность - противоречивые требования.

В сопротивлении материалов широко применяются методы теоретической механики и математического анализа, используются данные из разделов физики, изучающих свойства различных материалов, материаловедения и других наук. К тому же сопротивление материалов является наукой экспериментально-теоретической, так как она широко использует опытные данные и теоретические исследования.

В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В теоретической механике рассматривают равновесие абсолютно твердого (недеформированного) тела, при составлении уравнений равновесия допустимы замена системы сил статически эквивалентной системой, перенос сил вдоль линии их действия, замена ряда сил их равнодействующей. При решении задач сопротивления материалов, подобные замены или перенос сил недопустимы.

В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел. В состав механики деформируемых тел входят также такие дис­циплины, как: теория упругости, теория пластичности, теория пол­зучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердо­го деформируемого тела заключается в подходах к решению задач.

Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены.

В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать приемлемые по точности результаты расчетов.

При этом главной задачей курса является формирование знаний для применения математического аппарата при решении при­кладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. Конечная цель науки сопротивления материалов – определение размеров элементов сооружений, обеспечивающих его работоспособность при минимальном расходе материалов. То есть данный предмет является базовым для формирования инженерного мышления и подготовки кадров высшей квалификации по техническим специализациям.

Сопротивление материалов является основой для изучения курса «Детали машин» и различных специальных дисциплин, таких, как «Конструкция и прочность двигателей», «Конструкция и прочность летательных аппаратов» и т.п. 

Зарождение науки о сопротивлении материалов относится к XVII в. и связано с работами знаменитого ученого того времени Галилео Галилея. Значительный вклад в ее развитие был сделан выдающимися учеными: Гуком, Бернулли, Сен-Венаном, Коши, Ламе, Эйлером и др. В России в конце XIX-начале XX века важные исследования в области сопротивления материалов провели русские ученые Д.И.Журавский, Ф.С.Ясинский, И.Г.Бубнов, С.П.Тимошенко и др.

 

Реальный объект и расчетная схема

В сопротивлении материалов, как и во всякой отрасли естествознания, исследование вопроса о прочности или жесткости реального объекта начинается с выбора расчетной схемы. Расчетная схема конструкции - его упрощенная схема, освобожденная от несущественных в данной задаче особенностей. К числу существенных факторов расчетной схемы относят: геометрию объекта, его форму и размеры; физические характеристики материала; нагрузки, прикладываемые к объекту. Например, при расчете на прочность троса, поднимающего груз, можно не учитывать форму груза, сопротивление воздуха, изменение давления и температуры воздуха с высотой, силу тяжести троса и многие другие факторы, учет которых усложняет расчет троса, но практически не влияет на конечный результат. Трос, свитый из большого числа тонких проволочек, в данном примере можно рассматривать как однородный стержень круглого поперечного сечения, нагруженный растягивающей силой, сосредоточенной в месте крепления груза.

При выборе расчетной схемы вводятся упрощения (схематизация) реального объекта, т.е. отбросить все те факторы, которые не могут сколько-нибудь заметным образом повлиять на работу системы в целом.

 

Рис.2. Приведение реального объекта к расчетной схеме

 

Такого рода упрощения задачи совершенно необходимы, так как решение с полным учетом всех свойств реального объекта является принципиально невозможным в силу их очевидной неисчерпаемости.

Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня), оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями.

Под стержнями подразумеваются тела довольно разнообразной и вместе с тем специфической формы. Представим себе некоторую линию, вдоль которой движется плоская фигура так, что её центр тяжести находится на этой линии, а плоскость фигуры нормальна к ней (рис. 3). Если размеры фигуры b, h существенно меньше длины линии l, то описанное указанным образом тело называется стержнем (или брусом); соответственно отмеченная плоская фигура называется поперечным сечением стержня, а отмеченная линия – осью стержня.

Рис. 3. Прямой брус (стержень) постоянного сечения

 

Если поперечное сечение при движении вдоль оси не изменяется, то тогда имеет место стержень постоянного сечения; в противном случае – стержень переменного сечения. Если ось стержня – прямая линия, то это прямой стержень. Если ось стержня – кривая линия, то его называют кривым стержнем. Если поперечное сечение при движении вдоль оси вращается вокруг касательной к оси, то стержень называют естественно-закрученным. Примером прямого естественно-закрученного стержня постоянного сечения является рабочая часть сверла. Используются также и другие названия. В частности, брус, работающий на растяжение, называют стержнем (рис.4, а), на изгиб, обычно называют балкой, а стержень, передающий вращательное движение, – валом. Стержневые элементы, воспринимающие вертикальные сжимающие силы, называют стойками, а наклонные элементы - раскосами. Конструкцию, состоящую из соединенных изгибаемых стержней, называют рамой. Если же благодаря шарнирному соединению стержней все они работают только на растяжение или сжатие (от нагрузки, приложенной в узлах), то конструкцию называют фермой.

Второй основной геометрической фор­мой, рассматриваемой в сопротивлении материалов, является оболочка, под которой подразумевается тело, у которого одно из измерений (толщина) намного меньше, чем два других (рис.4, в). К оболочкам относятся различного рода резервуары, котлы, купола зданий, корпуса подводных лодок, обшивка фюзеляжа самолета и т.п.

Срединная поверхность – это геометрическое место точек, равноудаленных от внешней и внутренней поверхностей оболочки.

Оболочка, срединная поверхность которой представляет собой плоскость, называется пластиной (рис.4, б). Примером могут служить крыши и днища резервуаров, перекрытия зданий, различные диски и т.п.

Элемент конструкции, размеры которого во всех направлениях мало отличаются друг от друга, называется массивом. К ним относятся фундаменты сооружений, подпорные стенки и т.п.

Методы расчета пластин, оболочек и массивных тел при больших деформациях рассматриваются в курсе «Прикладная теория упругости». Способы расчета стержневых систем изучаются в курсе «Строительная механика».

 

1.jpg

 

Рис. 4. Основные модели формы в моделях прочностной надежности:
а – стержень; б – пластина; в – оболочка

 

В заключение отметим, что если для одного объекта может быть предложено несколько расчетных схем, то, с другой стороны, одной расчетной схеме может быть поставлено в соответствие много различных реальных объектов.

Последнее обстоятельство является весьма важным, так как исследуя некоторую схему, можно получить решение целого конкретных задач, сводящихся к данной схеме.

 

Связи и опорные устройства

Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи, ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.

Основным видом связей в расчетной схеме является шарнирная связь.

Простой шарнир (рис. 5) накладывает две связи.

 

Шарниры

Рис. 5

 

В расчетную схему входит основание, т.е. тело, на котоpое опирается cистема в целом, считающееся неподвижной.

Неподвижность расчетной схемы относительно основания обеспечивается опорными связями (опорами).

Все опорные связи условно делятся на три основных типа:

- Подвижная шарнирная опора (рис.6, а). Такая опора не препятствует вращению конца бруса и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через ось катка (R).

- Неподвижная шарнирная опора (рис.6, б). Такая опора допускает вращение конца бруса, но устраняет поступательное движение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие, одна из которых направлена вдоль оси бруса (Н), другая - перпендикулярно к оси бруса (R).

- Жесткая заделка или защемление (рис.6, в). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре в общем случае может возникать реакция, которую обычно раскладывают на две составляющие (H и R) и момент защемления (М).

При рассмотрении реального объекта в число внешних сил включаются не только заданные нагрузки, но и реакции связей (опор), дополняющие систему сил до равновесного состояния.

 

1

Рис. 6

 

Внешние и внутренние силы. Метод сечений

Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями.

По способу приложения внешние силы делятся на объемные и поверхностные.

Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение, сила тяжести  или  силы  инерции.  Единицей  измерения объемных сил является сила, отнесенная к единице объема - кН/м3.

Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рас­сматриваемого объекта с окружающими телами (давление ветра, воды на стенку).

В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные.

Если давление q1 (Н/м2) передается на элемент конструкции через площадку, размеры которой очень малы по сравнению с размерами всего элемента (al), то его на основании принципа Сен-Венана можно привести к сосредоточенной силе F (рис. 7). Например, воз­действие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий.

Сосредоточенная сила F измеряется в ньютонах (Н), килоньютонах (кН). Подобным образом вводятся понятия сосредоточенных изгибающих и крутящих моментов.

image024

Рис. 7

 

Если давление q2 (Н/м2) передается на элемент конструкции через площадку, размеры которой сравнимы с размерами всего элемента (c<l), то его представляют в виде распределенной или погонной нагрузки q3 с размерностью кН/м или кН/м2 (рис. 7). Примером может служить собственный вес балки, действие снеговой или ветровой нагрузки на сооружение, давление жидкости в резервуаре. Распределенная нагрузка может действовать и по линии как, например, при соприкасании двух цилиндров при параллельном расположении их осей.

На расчетной схеме вместо бруса изображается его ось. Нагрузки, распределенные по линии и сосредоточенные в точках, реально не существуют. Их можно получить лишь в результате схематизации реальных нагрузок, распределенных по объему (объемных сил) и по поверхности.

По времени действия внешние нагрузки (силы) разделяются на постоянные и временные. Собственный вес зданий – это постоянно действующая нагрузка на протяжении всего периода эксплуатации здания; поезд, идущий через мост, - это нагрузка временная.

По характеру изменения силы во времени различают нагрузки статические и динамические. Статические нагрузки (постоянные) - такие, которые изменяют свою величину или точку приложения (направление) с очень небольшой скоростью, так что возникающими при этом ускорениями (силами инерции) можно пренебречь. Динамические нагрузки - изменяются во времени с большой скоростью, при этом силы инерции должны быть учтены, так как оказывают существенное влияние на конструкцию. Динамические нагрузки подразделяются на внезапно приложенные, повторно-переменные и ударные. Примером внезапно приложенной нагрузки может служить действие веса железнодорожного состава, проходящего через мост; повторно-переменной – нагрузка на шатун в двигателе внутреннего сгорания; ударной – действие силы удара молота на его фундамент или гидравлический удар в гидросистеме. Ударные нагрузки возникают также в случае плохой пригонки или износа сопряженных деталей, когда зазоры превышают величину, допустимую по конструктивным и технологическим условиям. Например, при износе зубьев шестерен или деталей шариковых подшипников в машине возникают характерные стуки, свидетельствующие о возникновении ударных нагрузок, быстро приводящих к выходу конструкции из строя. 

Динамические нагрузки также подразделяются на периодические и случайные нагрузки. К случайным нагрузкам относятся нагрузки, действующие на детали автомобилей, тракторов, станков, а также нагрузки, действующие на сооружения (дома, мачты, краны и т.п.) от давления ветра, снега и т.п.

Более глубокое изучение таких нагрузок возможно лишь с помощью методов статистики и теории вероятности, которые применяются при изучении случайных величин.

Временная нагрузка может сохранять более или менее постоянную величину в течение всего периода ее действия, а может непрерывно изменяться по некоторому закону; в последнем случае она называется переменной нагрузкой.

Если переменная нагрузка изменяется по циклическому (повторяющемуся) закону, то она называется циклической.

В машиностроении расчетные нагрузки определяются в зависимости от конкретных условий работы машины: по номинальным значениям мощности, угловой скорости отдельных ее деталей, силы тяжести, сил инерции и т. п. Например, при расчете деталей трехтонного автомобиля учитывают номинальный полезный груз, равный 3 тонны. Возможность же перегрузки автомобиля учитывают тем, что размеры сечения деталей назначают с некоторым запасом прочности.

Скорость роста усилий при динамическом нагружении не обеспечивает равновесности процессов, протекающих в материале, в результате чего возникают многочисленные нарушения внутренней структуры материала. При систематическом чередовании нагружения и разгрузки накопление дефектов структуры ведет к возникновению микроскопических трещин, слияние которых приводит к усталостному разрушению. 

По отношению к выбранному материальному телу (элементу конструкции) все действующие силы подразделяются на внешние и внутренние силы. Под внешними силами (нагрузками) понимаются силы взаимодействия данного материального тела со всеми другими окружающими его телами.

Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия. Эти силы сопротивляются стремлению внешних сил разрушить элемент конструкции, изменить его форму, отделить одну часть от другой. Вообще внутренние силы возникают между всеми смежными частицами тела при нагружении.

Понятно, что деление сил (нагрузок) на внешние и внутренние силы является условным. Одна и та же сила может быть и внутренней и внешней, всё зависит от выбора объекта исследования. В сопротивлении материалов считается, что если нет внешних сил, то отсутствуют и внутренние, то есть, справедлива гипотеза о ненапряженном начальном состоянии тела.

Для выявления внутренних сил и последующего их определения применяют метод сечений, суть которого заключается в следующем. Пусть к элементу сооружения, имеющего форму бруса, приложена система внешних сил, удовлетворяющая условиям равновесия. Под действием этой нагрузки в элементе возникают внутренние силы. В произвольном месте мысленно рассечем брус поперечным сечением на две части (рис. 8, а).

Рис.8. Определение внутренних сил методом сечений: а) – элемент до рассечения поперечным сечением;

б) – приведение системы внутренних сил к центру тяжести сечения; в) – разложение главного вектора и главного момента по осям координат

 

Так как связи между частями устранены, то необходимо действие правой части на левую, и левой на правую заменить системой сил в этом сечении. Эти силы определяют взаимодействие между частицами тела, расположенными по разные стороны от мысленно проведенного сечения, и поэтому являются внутренними для тела в целом. Согласно закону действия и противодействия система сил, возникающих на поверхности сечения в левой отсеченной части, равна, но обратна по знаку системе сил на поверхности сечения в правой отсеченной части. Согласно допущению о сплошности материала следует считать, что внутренние силы распределены по сечению непрерывно по некоторому не известному нам закону.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций.

Рассмотрим отдельно какую-либо из отсеченных частей бруса, например левую. Внутренние силы, возникающие в сечении целого бруса по отношению к рассматриваемой отсеченной части бруса, являются внешними и дополняют систему заданных внешних сил до равновесной. Приведем систему внутренних сил к центру тяжести сечения (рис. 8, б). В результате получим главный вектор R и главный момент M.

Выберем систему координат так, чтобы ось z совпала с нормалью к сечению (располагалась вдоль оси элемента), а оси у и x лежали в плоскости нормального сечения. Разложив главный вектор и главный момент по осям координат, получим составляющие: три силы и три момента. Эти составляющие называют внутренними силовыми факторами в сечении бруса, каждая из которых имеет свое наименование: N - нормальная сила; Qy и Qz - поперечные силы; Т - крутящий момент; Mz и Му - изгибающие моменты относительно осей x и y (рис. 8, в).

При известной нагрузке все шесть внутренних силовых факторов могут быть определены из уравнений равновесия составленных для рассматриваемой части бруса. Заметим, что в каждое уравнение войдут проекции на соответствующую ось (или моменты относительно оси) всех внешних сил, приложенных к рассматриваемой части, и только один из внутренних силовых факторов.

ΣZ = ΣFzотс + N = 0;      Σmz = ΣMzотс + T = 0;

ΣY = ΣFyотс + Qy = 0;    Σmy = ΣMyотс + My = 0;

ΣX = ΣFxотс + Qx = 0;     Σmx = ΣMxотс + Mx = 0.

Уравнения равновесия позволяют сформулировать правило определения каждого из внутренних силовых факторов:

Продольная сила в произвольном поперечном сечении бруса численно равна алгебраической сумме проекций на ось z, всех внешних сил, действующих на одну из  отсеченных (левую или правую) частей бруса.

N = ΣFzотс.

То же для определения поперечных сил Qy и Qx,, только проектировать внешние силы необходимо на оси y и x.

Qy = ΣFyотс,

Qx = ΣFxотс.

Изгибающие моменты Mx и My и крутящий момент T, численно равны алгебраической сумме моментов всех сил по одну сторону от сечения, относительно соответствующих осей x, y и z.

T = ΣMzотс,

Mx = ΣMxотс,

My = ΣMyотс.

Для установления знака внутреннего силового фактора будем придерживаться следующих правил:

Условимся продольную силу считать положительной, если она вызывает растяжение, т.е. направлена от сечения и отрицательной, если она вызывает сжатие, т. е. направлена к сечению.

При решении задач знак N удобнее устанавливать в зависимости от направления внешних сил. Если внешняя сила, направлена в противоположную от сечения сторону, то она вызывает в нем положительную продольную силу (растяжение), и наоборот, если внешняя сила, направлена к сечению, то она вызывает в нем отрицательную продольную силу (сжатие) (рис. 9, а).

 Поперечную силу Q будем считать положительной, если она направлена так, что стремиться повернуть отсеченную часть бруса по ходу часовой стрелки (рис. 9, б), и отрицательной, если - против хода часовой стрелки.

Согласно этому правилу внешняя сила, стремящаяся повернуть рассматриваемую часть бруса относительно сечения по ходу часовой стрелки, вызывает в сечении положительную поперечную силу

Крутящий момент Т будем  считать положительным, если при взгляде со стороны внешней нормали на рассматриваемое сечение он направлен по ходу часовой стрелки или внешний скручивающий момент направлен против хода часовой стрелки (рис.9, в).

Изгибающий момент Mx считается положительным, если он  вызывает растяжение нижних волокон рассматриваемой части бруса. В противном случае изгибающий момент считается отрицательным (рис. 9, г).

Рис. 9. Виды сопротивлений:

а) растяжение (сжатие); б) сдвиг; в) кручение; г) изгиб

 

Согласно принятому правилу знаков для изгибающего момента, если внешняя сила, приложенная к рассматриваемой части бруса изгибает участок, расположенный между сечением точкой ее приложения выпуклостью вниз, то изгибающий момент положительный. Отрицательному значению изгибающего момента соответствует противоположное направление выпуклости балки

Таким образом, метод сечений позволяет найти значения внутренних силовых факторов и установить вид нагружения в любом сечении бруса при действии любой нагрузки. Для этого необходимо выполнить следующее:

1. Мысленно рассекаем брус на две части в пределах исследуемого iго участка.

2. Оставляем ту часть бруса, на которую действует меньше сил.

3. Заменяем действие условно отброшенной части бруса положительными внутренними силовыми факторами, приведенными к центру тяжести исследуемого сечения бруса.

4. Выберем для оставленной части бруса скользящую систему координат (начало координат совмещаем с границей участка, положение исследуемого сечения определяется координатой zi, где 0zic и c – длина i-го участка).

5. Определяем искомые внутренние силовые факторы из уравнений равновесия ΣZ = 0;  ΣY = 0;   ΣX = 0;   Σmz = 0;   Σmy = 0;   Σmx = 0, которые составляем для оставленной части бруса.

Проверка правильности определения усилий ведется в двух направлениях: а) выполнение условий равновесия, не использованных при определении внутренних усилий; б) проверка равновесия части тела, которая не рассматривалась при решении задачи.

В зависимости от вида внутренних силовых факторов, возникающих в сечении, различают различные следующие виды нагружения бруса.

- Растяжение или сжатие. Действует только продольная сила N.

- Кручение. Действует только крутящий момент T.

- Сдвиг. Действует  только поперечная сила Qx или Qy

- Изгиб. Действует только изгибающий момент Mx или My (чистый изгиб), при действии изгибающего момента и поперечной силы (поперечный изгиб).

- Сложное сопротивление. Одновременное действие нескольких силовых факторов. Например, Mx и T, M и N.

Итак, внутренние усилия в сечении есть функции параметров, определяющих положение сечения в теле, и нагрузок по одну сторону от сечения. Эти функции могут быть представлены аналитически или графически. График, показывающий изменение внутреннего усилия в зависимости от положения сечения, называется эпюрой. Ординаты усилий в определенном масштабе откладывают от линии, соответствующей оси бруса.

 

Дифференциальные уравнения равновесия для внутренних усилий в поперечных сечениях стержней

В общем случае нагрузка на стержень может быть задана интенсивностью сил с составляющими n, qy, qz, и интенсивностью моментов с составляющими t, my, mz. Возможна также нагрузка, сосредоточенная в отдельных точках. Для бесконечно малой части стержня (рис.10) составим дифференциальные уравнения равновесия.

Рис. 10

 

Из условий ΣX=0,  ΣY=0,  ΣZ=0,  ΣMx=0, следуют уравнения:

Из условий ΣMy=0, ΣMz=0 получаем:

откуда, пренебрегая бесконечно малыми второго порядка, находим

Подставляя выражения Qy и Qz в соответствующие дифференциальные уравнения, получаем

Интегрируя полученные шесть уравнений, находим выражения для внутренних усилий:

Постоянные интегрирования Сi (i=1,2,...,6) определяются из граничных условий для рассматриваемых внутренних усилий.

Поскольку дифференциальные уравнения выражают равновесие любого бесконечно малого элемента стержня, то удовлетворение им означает выполнение условий равновесия стержня в целом.

Дифференциальные зависимости используются для проверки результатов, полученных с помощью алгебраических уравнений равновесия. Они позволяют, например, по эпюре Mz(My) определить характер эпюры Qy(Qz). В частности, на участках, где mz=0 (my=0), т.е. при соблюдении зависимостей

можно установить, что при Мz = const имеем Qy = 0 (при Мy = const имеем Qz = 0). Переменная величина Mz(My) достигает экстремальных значений в точках, где Qy = 0 (Qz = 0).

При определении внутренних усилий из уравнений равновесия целесообразно нагрузку на поверхности переносить в соответствующие точки на оси стержня с соблюдением условий статической эквивалентности. Полученная таким образом силовая схема является составной частью так называемой расчетной схемы (системы), когда брус представляется его осью.

 

Допущения, применяемые в сопротивлении материалов

Для построения теории сопротивления материалов принимают некоторые понятия и допущения относительно структуры и свойств материалов, а также о характере деформаций. Приведем основные из них.

1. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее, указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.

С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот и не учитывается реальная структура материала (зернистая, кристаллическая и др.). Это допущение позволяет использовать в сопротивлении материалов методы математического анализа (дифференциальное и интегральное исчисления). Для большинства машиностроительных конструкций расчеты, основанные на допущении о сплошности строения дают практически удовлетворительные результаты. Это объясняется тем, что размеры детали во много раз больше межатомных расстояний.

2. Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Материалы, имеющие различные свойства в разных направлениях, называют анизотропными (например, дерево, ткани (косой и кривой крой), армированная пластмасса, бетон). К анизотропным относятся и материалы с направленной кристаллизацией и с монокристаллической структурой. Отдельно взятый кристалл материала анизотропен, но т.к. в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен.

Металлы и сплавы, как правило, изотропны, так как большинство металлов имеет мелкозернистую структуру. Благодаря большому количеству кристаллов свойства материалов выравниваются в различных направлениях и можно считать эти материалы практически изотропными. В настоящее время широкое распространение получили анизотропные композиционные материалы, состоящие из двух компонентов – наполнителя и связующего. Наполнитель состоит из уложенных в определенном порядке высокопрочных нитей – матрицы, что и определяет значительную анизотропию композита. Композиционные материалы имеют высокую прочность при значительно меньшем, чем металлы весе. 

3. Принимается, что до определенной величины деформации материалов подчиняются закону Гука и весьма малы относительно размеров тела, поэтому все расчеты выполняются по исходной, т.е. недеформированной, схеме, к которой применим принцип независимости действия сил (принцип суперпозиции).

Результат воздействия на тело системы сил равен сумме результатов воздействия тех же сил, прилагаемых к телу последовательно и в любом порядке (рис. 11). Под словами «результат воздействия» следует понимать – деформации, внутренние силы и перемещения отдельных точек.

image099

Рис. 11. Использование принципа суперпозиции

Должны соблюдаться два условия:

1. перемещения малы по сравнению с размерами тела,

2. перемещения линейно зависят от силы.

С помощью этого принципа сложный случай приводится к простым.

4. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструк­ций абсолютно упругий. Это допущение справедливо, пока нагрузки не превышают определенного значения. При больших нагрузках в элементах конструкций появляются пластические деформации. Пластичностью называется свойство тела сохранять после прекращения действия нагрузки, или частично полученную при нагружении, деформацию.

Ползучестью называется свойство тела увеличивать деформацию при постоянных внешних нагрузках.

5. Перемещения, возникающие под действием внешних сил в упругом теле, малы по сравнению с его размерами. Это допущение называется принципом начальных размеров. В большинстве случаев механические конструкции работают в упругой зоне (в зоне действия закона Гука), а упругие деформации малы по сравнению с геометрическими размерами (рис. 12). Допущение позволяет при составлении уравнений равновесия пренебречь изменениями формы и размеров конструкции. 

ll

Рис.12. Принцип неизменности геометрических размеров

 

6. Предполагается, что в сечениях, достаточно удаленных от мест приложения нагрузки, характер распределения напряжений не зависит от конкретного способа нагружения.  Основанием для такого утверждения служит принцип Сен-Венана, справедливый для любого типа напря­женного состояния и формулируемый следующим образом: особенности приложения внешних нагрузок проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня или другое определение: в точках тела, достаточно удаленных от мест приложения нагрузок, величина внутренних сил весьма мало зависит от конкретного способа приложения этих нагрузок, а зависит только от ее статического эквивалента (рис. 13). Этот принцип во многих случаях позволяет производить замену одной системы сил другой системой, статически эквивалентной, что позволяет часто значительно упростить расчет. Принцип Сен-Венана подробно рассмотрен в части 2.

Рис.13. Использование принципа Сен-Венана

 

7. Принимается гипотеза плоских сечений (гипотеза Бернулли), введенной швейцарским ученым Д. Бернулли, гласящей, что плоские поперечные сечения стержня до деформации остаются плоскими и после деформации (рис.14).

image111

Рис.14. Гипотеза плоских  сечений

 

8. Считается, что ненагруженное тело свободно от каких бы то ни было внутренних сил любой природы. Изменению формы и размеров тела под нагрузкой сопротивляются силы взаимодействия между частицами материала, называемые силами упругости. В дальнейшем, говоря о внутренних силах, будем иметь в виду именно эти силы упругости, не принимая во внимание молекулярные силы, имеющиеся и в ненагруженном теле. Это допущение полностью не выполняется ни для одного материала. Причины возникновения неравномерных внутренних или начальных усилий:

- В стальных деталях из-за неравномерного остывания;

- В дереве из-за неравномерного высыхания;

- В бетоне в процессе твердения.

В тех случаях, когда есть основания предполагать, что эти силы значительны, стараются определить их экспериментально. Однако, часто они достаточно малы, чтобы их учитывать.

 Использование этих понятий и допущений существенно упрощает изучение поведения конструкций под нагрузкой, а соответствие условного материала реальным материалам достигается введением в расчет элементов сооружений экспериментально получаемых механических характеристик реальных материалов.

 

Напряжения

При определении внутренних силовых факторов их считают приложенными в центре тяжести сечения. В действительности внутренние силы, являясь результатом взаимодействия частиц тела, непрерывно распределены по сечению. Интенсивность этих сил в разных точках сечения может быть различной. При увеличении нагрузки на элемент конструкции увеличиваются внутренние силы и соответственно увеличивается их интенсивность во всех точках сечения. Если в некоторой точке интенсивность внутренних сил достигнет определенного для данного материала значения, в этой точке возникает трещина, развитие которой приведет к разрушению элемента, или возникнут недопустимые пластические деформации. Следовательно, о прочности элементов конструкций следует судить не по значению внутренних силовых факторов, а по их интенсивности. Меру интенсивности внутренних сил называют напряжением.

В окрестности произвольной точки, принадлежащей сечению некоторого нагруженного тела, выделим элементарную площадку , в пределах которой действует внутреннее усилие ∆F (рис. 15, а).

Среднее значение интенсивности внутренних усилий на площадке, называемое средним напряжением, определяют по формуле

Уменьшая площадь ∆A, в пределе получаем истинное напряжение в данной точке сечения

Векторная величина p называется полным напряжением в точке. В международной системе единиц (СИ) за единицу напряжения принят паскаль (Па=Н/м2) – это напряжение, при котором на площадке 1 м2 действует внутренняя сила 1 Н.

Так как эта единица очень мала, в расчетах используют кратную единицу напряжения – мегапаскаль (1 МПа=106 Па).

Разложим вектор полного напряжения p на две составляющие (рис.15, б).

Проекция вектора полного напряжения p на нормаль к данной площадке обозначается через σ и называется нормальным напряжением.

Ocr0302

Рис. 15

 

Составляющую, лежащую в сечении в данной площадке обозначается через τ и называется касательным напряжением.

Нормальное напряжение, направленное от сечения, считают положительным, направленное к сечению – отрицательным.

Нормальные напряжения возникают, когда под действием внешних сил частицы, расположенные по обе стороны от сечения, стремятся удалиться одна от другой или сблизиться. Касательные напряжения возникают, когда частицы стремятся сдвинуться одна относительно другой в плоскости сечения.

Касательное напряжение можно разложить по координатным осям на две составляющие  и  (рис.15, в). Первый индекс при τ показывает, какая ось перпендикулярна сечению, второй – параллельно какой оси действует напряжение. Если в расчетах направление касательного напряжения не имеет значения, его обозначают без индексов. 

Между полным напряжением и его составляющими существует зависимость

Через точку тела можно провести бесконечное число сечений и для каждого из них напряжения имеют свое значение. Следовательно, при определении напряжений необходимо указывать положение не только точки тела, но и сечения, проведенного через эту точку.

Совокупность напряжений для множества элементарных площадок, проходящих через данную точку, образует напряженное состояние в этой точке.

В дифференциальные уравнения равновесия бесконечно малого прямоугольного параллелепипеда входят шесть независимых скалярных величин, соответствующих составляющим напряжений по его граням. Они определяют тензор напряжений:

При этом учитывается свойство парности касательных напряжений (τxy = τyx,  τxz = τzx,  τyz= τzy): на двух взаимно перпендикулярных площадках составляющие касательных напряжений, перпендикулярные к линии пересечения площадок, равны по величине и взаимно направлены либо к линии пересечения, либо от нее.

Если площадка dA совпадает с поверхностью тела, то составляющие напряжения трансформируются в составляющие внешних сил, действующих на поверхности тела. Соответствующие уравнения выражают условия на поверхности, или статические граничные условия.

Площадка, на которой касательные напряжения равны нулю, называется главной. Через точку проходят три главные площадки. По ним действуют главные напряжения, которые обозначаются σ1, σ2, σ3 (σ1σ2 σ3).

Напряжения в поперечных сечениях связаны с внутренними силовыми факторами определенными зависимостями.

Возьмем в сечении бесконечно малую площадку площадью dA. По этой площадке в общем случае действуют бесконечно малые (элементарные) внутренние силы (рис. 16)

Ocr0303

Рис.16

 

Соответствующие элементарные моменты относительно координатных осей x, y, z имеют вид:

Просуммировав бесконечно малые силы и моменты, действующие в сечении, получим выражения, связывающие внутренние силовые факторы с напряжениями:

В соответствии с теоремой Вариньона, известной из теоретической механики, и зависимостью между напряжениями τ,  и , выражение для  можно записать в виде

где

Интегральные зависимости (1.4) можно использовать для определения напряжений по найденным методом сечений внутренним силовым факторам при условии, что известны законы распределения напряжений по сечению. Поскольку эти законы зависят от вида деформации, то обратная задача (определение напряжений через внутренние усилия) решается путем совместного использования условий равновесия и условий деформирования тела. Задача становится статически неопределимой.

 

Перемещения и деформации

Под действием внешних сил твердые тела изменяют свою геометрическую форму, то есть деформируются. Если в теоретической механике тела считаются абсолютно жесткими, то в сопротивлении материалов тела обладают способностью деформироваться, т.е. под действием внешней нагрузки изменять свои начальные размеры и форму. Точки тела при этом неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т. деформированного состояния, называется вектором полного перемещения т. А (рис. 17, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно.

Для того, чтобы охарактеризовать интенсивность изменения формы и размеров тела, рассмотрим точки А и В его недеформированного состояния, расположенные на расстоянии S друг от друга (рис. 17, б).           

Рис. 17

 

Пусть в результате изменения формы тела эти точки переместились в положение  и , соответственно, а расстояние между ними увеличилось на величину DS и составило S + DS. Величина

называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы , , .

Линейные деформации , ,  характеризуют изменения объема тела в процессе деформирования, а формоизменения тела - угловыми деформациями. Для их определения рассмотрим прямой угол, образованный в недеформированном состоянии двумя отрезками ОD и ОС (рис. 17, б). При действии внешних сил указанный угол DOC изменится и примет новое значение . Величина

называется угловой деформацией, или сдвигом в точке О в плоскости СОD. Относительно координатных осей деформации сдвига обозначаются , , .

Линейные и угловые деформации – величины безразмерные. Деформацию , ,  часто называют относительной линейной деформацией, а , ,  относительным сдвигом.

Положительными принимают линей­ную деформацию, соответствующую растяжению, и деформацию сдвига, отвечающую уменьшению первона­чального угла пересечения отрезков. Полагая деформации малыми, мы можем в дальнейшем пренебрегать ими по сравнению с единицей, а также их высокими сте­пенями по сравнению с первой степенью.

Совокупность линейных и угловых деформаций по различным направлениям и плоскостям в данной точке образует деформированное состояние в точке. В слу­чае малых деформаций оно полностью определяется линейными де­формациями трех взаимно перпендикулярных линейных элементов тела, проходящих через данную точку, и тремя деформациями сдвига этих линейных элементов. Соответствующие шесть незави­симых скалярных величин определяют тензор деформаций:

Главные оси деформации – три взаимно перпендикулярные прямые, проходящие через данную точку тела и совпадающие по направлениям с такими тремя линейными элементами тела, которые остаются взаимно перпендикулярными и после деформации. Линейные деформации по направлениям этих осей называются главными деформациями и обозначаются ε1, ε2, ε3 (ε1≥ε2≥ε3).

Следует подчеркнуть, что в сопротивлении материалов слово деформация имеет данное выше строгое определение и выступает как количественная мера изменения геометрических размеров в окрестностях точки.

 

Закон Гука и принцип независимости действия сил

Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Р.Гуком в формулировке «ut tensio sic vis» - «какого растяжение - такова и сила» и носит название закона Гука.

В соответствии с этим законом перемещение произвольно взятой точки А (рис. 17, а) нагруженного тела по некоторому направ­лению, например, по оси x, а может быть выражено следующим образом:

где Р - сила, под действием которой происходит перемещение u; - коэффициент пропорциональности между силой и перемещением.

Очевидно, что коэффициент  зависит от физико-механических свойств материала, взаимного расположения точки А и точки  приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.

В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением.

Касательные напряжения τ вызывают угловые деформации γ, причем при малых деформациях они не влияют на изменение линейных размеров и, следовательно, на линейные деформации. Нормальное напряжение σ не влияет на угловые деформации, так как при этом изменяются только линейные размеры отрезков, а не углы между ними.

Параметры E и G, входящие в эти формулы, называют модулями упругости материала соответственно первого и второго рода. Они характеризуют его сопротивляемость деформированию, или жесткость в упругой стадии деформации. При одном и том же напряжении деформации больше у того материала, у которого меньше модуль упругости. Численные значения E и G для каждого конструктивного материала определяются экспериментально. Они имеют размерности напряжений. На практике удобно использовать единицы, кратные паскалю: мегапаскаль (1 МПа=106 Па) и гигапаскаль (1 ГПа=109 Па). 

При растяжении или сжатии одновременно с продольной деформацией ε =l/l (рис. 18, а), в элементе возникает поперечная деформация  = -а/а.

Отношение

называют коэффициентом Пуассона.

Величины коэффициента Пуассона и модуля упругости для различных материалов определяют опытным путем и их значения приведены в ГОСТ. Между модулем упругости и модулем сдвига существует зависимость

Установим связь между нормальными напряжениями и линейными деформациями, справедливые для любого напряженного состояния. Рассмотрим бесконечно малый элемент, имеющий форму кубика, на гранях которого возникают напряжения растяжения σx, σy, σz. При действии только напряжения σx, элемент получает продольную деформацию в направлении оси х, равную, согласно закону Гука, σx/Е (рис. 18,б). Одновременно его размеры вдоль осей y и z уменьшатся, при этом соответствующие поперечные деформации будут равны

Аналогичное действие оказывает растягивающие напряжения σy и σz.. Каждое из них вызывает продольную деформацию в своем направлении σу/Е и σz/Е и поперечные деформации по двум другим направлениям (рис. 18,в, г).

Суммируя деформации в направлениях каждой оси, получаем